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Abstract Astatisticalmodel assuming a preferential attach-
ment network, which is generated by adding nodes sequen-
tially according to a few simple rules, usually describes
real-life networks better than a model assuming, for exam-
ple, a Bernoulli random graph, in which any two nodes have
the same probability of being connected, does. Therefore,
to study the propagation of “infection” across a social net-
work, we propose a network epidemic model by combining
a stochastic epidemic model and a preferential attachment
model. A simulation study based on the subsequent Markov
Chain Monte Carlo algorithm reveals an identifiability issue
with the model parameters. Finally, the network epidemic
model is applied to a set of online commissioning data.

Keywords Stochastic epidemic models · MCMC ·
Random graphs · Preferential attachment · Community
commissioning

1 Introduction

Social network analysis has been a popular research topic
over the last couple of decades, thanks to the unprecedentedly
large amount of internet data available, and the increasing
power of computers to deal with such data, which details
ties between people or objects all over the world. A lot of
models have been developed to characterise and/or generate
networks in various ways. One well-known class of models
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in the statistical literature is the exponential random graph
model (ERGM), in which the probability mass function on
the graph space is proportional to the exponential of a linear
combination of graph statistics; see, for example, Snijders
(2002). The Bernoulli random graph (BRG), in which any
two nodes have the same probability of being connected,
independent of any other pair of nodes, is a special case of
an ERGM. Although the choice of graph statistics allows
an ERGM to encompass networks with different characteris-
tics, in general the ERGMs do not describe real-life networks
well; see, for example, Snijders (2002) and Hunter et al.
(2008).

Instead of characterising a network by graph statistics,
such as the total number of degrees, the configuration model
considers the sequence of the individual degrees; see, for
example, Newman (2010, Chapter 13). Each node is assigned
a number of half-edges according to its degree, and the half-
edges are paired at random to connect the nodes. Despite its
simple rule of network generation, the configuration model
may contain multiple edges or self-connecting nodes, which
might not occur in real-life networks. Also, the whole net-
work is not guaranteed to be connected. Moreover, even
though the individual degrees may be flexibly modelled by a
degree distribution, they are not completely independent as
they have to sum to an even integer.

One prominent feature of social networks in real life is
that they are scale-free, whichmeans that the degree distribu-
tion follows a power law (approximately); see, for example,
Albert et al. (1999, 2000), and Stumpf et al. (2005). The
preferential attachment (PA) model by Barabási and Albert
(1999) is one widely known model (Newman 2010, Chap-
ter 14) that generates such a network with a few parameters
and a simple rule. Other models also exist that characterise
either the degree distribution, for instance the small-world
model by Watts and Strogatz (1998), or other aspects such

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11222-017-9770-6&domain=pdf
http://orcid.org/0000-0003-1785-8671


892 Stat Comput (2018) 28:891–904

as how clustered the nodes in the network are (Vázquez et al.
2002).

While the majority of the network models focus on the
topology of the network, some models are developed to
describe the dynamics within the network, in particular
how fast information spreads with respect to the struc-
ture of the network. As spreading rumours or computer
viruses through connections in a social network is sim-
ilar to spreading a disease through real-life contacts to
create an epidemic, most of these models incorporate cer-
tain compartment models in epidemiology. For instance,
the susceptible-infectious-recovered (SIR) model splits the
population into three compartments according to the stage
of the disease of each individual. A susceptible individual
becomes infectious upon contact with an infectious individ-
ual and recovers after a random period. Traditionally, the
infectious period and the contacts made by an infected indi-
vidual are assumed to follow an exponential distribution and
a homogeneous Poisson process, respectively. While these
assumptionsmaybeunrealistic for real-life data, they are use-
ful as the epidemic process is nowMarkovian. The dynamics
of compartment sizes over time can usually be characterised
by a small number of parameters in the rate matrix, which
is used to obtain the transition probabilities through the Kol-
mogorov’s equations; see, for example, Wilkinson (2011),
Section 5.4. While other kinds of compartment models can
be formulated in a similar way, some models depart from the
Markovian assumptions andwill be discussed later. For more
details on the SIR model and its variants, see, for example,
Andersson and Britton (2000).

Often implicitly assumed in such compartment models is
that the epidemic is homogeneous mixing, that is, each indi-
vidual can interact uniformly with all other individuals in the
community he/she belongs to. However, this is not the case
when it comes to network epidemics, as one can only infect
and be infected by their neighbours in the network, and the
collection of neighbours differs from individual to individual.
Therefore, modelling an epidemic on a structured popula-
tion requires relaxing the homogeneous mixing assumption.
Instead of assuming the same set of values for the parameters
governing the dynamics, one approach is to apply a separate
set of parameter values to, for example, each individual or all
individuals with the same degree. Such an approach focuses
on the modelling side and is dominant in the physics litera-
ture. A comprehensive review is provided by Pastor-Satorras
et al. (2015).

Our work on network epidemic modelling is motivated by
a data set from AppMovement1, which is an online platform
that enables communities to propose and design community-
commissioned mobile applications (Garbett et al. 2016). The
process of generating the application starts with a community

1 https://app-movement.com.
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Fig. 1 Cumulative count of infected for an epidemic of a campaign.
The time points where the count increments are the infection times I

creating a campaign page and sharing it via online social net-
works. If we view an individual having seen a campaign and
in turn promoting it as being “infected” (and “infectious”
simultaneously), then the process of sharing a campaign
can be compared to spreading a real-life virus to create an
epidemic. Themain difference is that such an infectious indi-
vidual cannot potentially infect anyone in the population but
only those connected to them on the social networks. For one
campaign, the cumulative count of infected and the network
of infected users are plotted in Figs. 1 and 2, respectively. The
former deviates from the typical S shape of a homogeneous
mixing epidemic, while the latter displays star-like structures
and long paths, which typical features in real-life networks.
It should be noted that this does not represent the complete
underlying network G, which is usually unknown.

Due to the difference in the data being applied to, as
well as the inclination towards inference, epidemic mod-
els in the statistics literature provide a stark contrast from
the classical compartment model, not only with respect to
the network issue. First, to accommodate heterogeneities
in mixing, Ball et al. (1997) and Britton et al. (2011) pro-
posed models which incorporate two levels and three levels
of mixing, respectively. Each individual belongs to both the
global level and one or more local levels, such as household,
school or workplace, and homogeneous mixing is assumed
to take place at each level but with a separate rate. Such mod-
els are prompted by data with detailed information of these
local level structures each individual belongs to, such as the
1861 Hagelloch measles outbreak data analysed by Britton
et al. (2011). Second, some SIR models and their variants
relax the assumption that the infectious period follows the
exponential distribution, essentially rendering the epidemic
process non-Markovian. For instance, Streftaris and Gibson
(2002) used theWeibull distribution, while Neal and Roberts
(2005) and Groendyke et al. (2012) used the Gamma dis-
tribution. In general, the compartment dynamics cannot be
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Fig. 2 Network representation of the transmission tree P for the same
campaign epidemic as shown in Fig. 1

represented by a simple differential equation. Third, infor-
mation is often missing in epidemic datasets, such as the
infection times and, if a network structure is assumed, the
actual network itself. Therefore, models are developed with
a view to inferring these missing data, usually achieved by
Markov Chain Monte Carlo (MCMC) algorithms. Examples
of models which impose a network structure include Brit-
ton and O’Neill (2002), Neal and Roberts (2005), Ray and
Marzouk (2008) and Groendyke et al. (2011). In the data
considered by these authors, no covariates exist to inform
if two individuals are neighbours in the network, and the
edge inclusion probability parameter is assumed to be the
same for any two individuals in the network. Essentially the
underlying network is a BRG, which yields a Binomial (or
approximately Poisson) degree distribution. Such a network
model seems unrealistic for our App Movement data, com-
pared to amodel that generates a scale-free networkor utilises
a power law type degree distribution.

In view of the differences in objectives and applications
shown above, we propose a network epidemic model as an
attempt to narrow the gap in the literature. We focus on a
susceptible-infectious (SI)model, inwhich the epidemic pro-
cess takes place on a network which is assumed to be built
from the PA model, thus deviating from a BRG. When it
comes to inference, the data contain the infection times and
potentially the transmission tree, while the underlying net-
work is unknown and therefore treated as latent variables.
We aim at simultaneously inferring the infection rate param-
eter, the parameters governing the degree distribution, and
the latent structure of the network, in terms of the posterior

edge inclusion probabilities, by using an MCMC algorithm.
While the choice of the SI model is due to the data in hand,
we believe the model structure and algorithm introduced can
be extended to other compartment models.

The rest of the article is divided as follows. The latent net-
work epidemic model is introduced in Sect. 2. Its likelihood
and its associated MCMC algorithm are derived in Sect. 3.
They are then applied to two sets of simulated data in Sect. 4,
and a set of real online commissioning data in Sect. 5. Section
6 concludes the article.

2 Model

In this section, we introduce the latent network SI epidemic
model. Describing the formation of the network and the
epidemic separately will facilitate the derivation of the like-
lihood in the next section. The notations and definitions are
kept to be similar to those in Britton and O’Neill (2002) and
Groendyke et al. (2011).

Consider an epidemic in a closed population of sizem. Let
I = (I1, I2, . . . , Im) denote the ordered vector of infection
times, where Ii is the infection time of individual i , and Ii ≤
I j for any i < j . We assume that the first individual is the
only initial infected individual. In order to have a temporal
point of reference, only the times of m − 1 infections will be
random, and so we define Ĩ = I− I1 = ( Ĩ1 = 0, Ĩ2, . . . , Ĩm)

for convenience. We also assume that the observation period
is long enough to include all infections.

Next, consider the undirected random graph G ofm nodes
which represents the social structure of the population, in
which the node i represents the i th individual. Using the
adjacency matrix representation, if individuals i and j are
socially connected, we write Gi j = 1 and call them neigh-
bours of each other, Gi j = 0 otherwise. In this sense, Gi j
can be interpreted as a potential edge of i and j . We also
assume symmetry in social connections and that each indi-
vidual is not self-connected, that is, Gi j = G j i and Gi i = 0,
respectively, for 1 ≤ i, j ≤ m.

To characterise G, we use a modified version of the PA
model by Barabási and Albert (1999), which generates a net-
work by sequentially adding nodes into it. This requires an
order of how the nodes enter the network, which is not nec-
essarily the same as the epidemic order. Therefore, we define
a vector random variable of the network order, denoted by
σ = (σ1, σ2, . . . , σm), whose support is all m! possible per-
mutations of {1, 2, . . . ,m}. Node σi (1 ≤ i ≤ m), labelled
by the epidemic order, is the i th node that enters the network.
Such order ismainly for the sake of characterisation using the
PAmodel, and the network is assumed to have formed before
the epidemic takes place, and remain unchanged throughout
the course of the epidemic. Such an assumption is reason-
able because the timescale of an epidemic is usually much
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smaller than that of network formation, the process of which
is described next.

2.1 Sequence of new edges

Initially, there are two nodes σ1 and σ2 which are connected
i.e. Gσ1σ2 = 1. When node σi (3 ≤ i ≤ m) enters the net-
work, it connects to Xi existing nodes, where Xi follows a
censored Poisson distribution with parameter μ and support
{1, 2, . . . , i − 1}, that is,

Pr(Xi = x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

e−μ(1 + μ), x = 1,
e−μμx

x ! , x = 2, 3, . . . , i − 2,
∞∑

z=i−1

e−μμz

z! , x = i − 1.

(1)

Independence is assumed between Xi and X j if i �= j . We
model the number of new edges as a randomvariable because
using a constant number of new edges, denoted byμ0, which
is what the original model by Barabási andAlbert (1999) did,
fixes the total number of edges to (m−2)μ0+1 andmakes the
model too restrictive. Empirically this censored distribution
performs better than a truncated Poisson distribution in terms
of identifying μ.

2.2 Attaching edges to nodes

When node σi joins the network, according to the original
PA rule, an existing node σ j (1 ≤ j < i) gets connected to
node σi , that is, Gσiσ j = 1, with probability proportional to

its current degree
∑i−1

k=1 Gσkσ j . To allow the degree of PA to
vary, we allow such probability to be a mixture of the current
degree and how recently the node has joined the network.
To be more specific, the process of choosing xi nodes is
equivalent to obtaining a weighted random sample without
replacement from {1, 2, . . . , i −1}, with the weight assigned
to node σ j equal to w j , where

w j = (1 − γ )

∑i−1
k=1 Gσkσ j

∑i−1
l=1

∑i−1
k=1 Gσkσl

+ γ
j

∑i−1
l=1 l

, (2)

where γ ∈ [0, 1] and can be seen as the parameter governing
the degree of PA. When γ = 0, this reduces to the original
PA rule. When γ increases, more weights are given to lat-
ter nodes, and the inequality in the degrees of the nodes is
reduced. Such inequality reduction is facilitated by assigning
weights according to how recent the nodes join the network,
rather than equal weights, in the non-PA component. Note
that, however, even in the extreme case where γ = 1, where
the degree distribution is unimodal and closer to symmetry,
the model does not reduce to a BRG, where the degree dis-

tribution is Binomial with parameters (m−1, p), where p is
the edge inclusion probability, but provides a crude approx-
imation to it.

2.3 Constructing the epidemic

The Markovian epidemic process is constructed as follows.
At time 0, the whole population is susceptible except indi-
vidual 1, who is infected. Once infected at time Ĩi , individual
i makes infectious contacts at points of a homogeneous
Poisson process with rate β

∑m
j=1 Gi j with its neighbours

(according toG), and stays infected until the end of the obser-
vation period. The random transmission treeP , with the same
node as G and whose root is the node labelled 1, can be
constructed simultaneously. If individual i makes infectious
contact at arbitrary t0 (governed by the aforementioned Pois-
son process) with susceptible neighbour j , we writePi j = 1,
again using the adjacencymatrix representation. This implies
Ĩ j = t0, and P j i = 0 as individual i cannot be re-infected.
Also, Pi j = 1 implicity implies that Gi j = (G j i =)1, as the
epidemic can only spread through social connections, i.e. the
edges inG. Also,we assumePi i = 0 as any individual cannot
be infected by themselves.

3 Likelihood and inference

We proceed to compute the likelihood, denoted by L , as a
function of β, μ, γ and σ . We assume both G and P are
given because, as argued by Britton and O’Neill (2002) and
Groendyke et al. (2011), it is easier to condition on G and P
in order to calculate L , and, if they are unobserved, include
them as latent variables in the inference procedure. Two con-
ditional independence assumptions need tobenoted.Because
of the Markovian nature of the epidemic, P and Ĩ are inde-
pendent given G. It is also common that the data ({Ĩ,P})
and (a subset of) the parameters (μ, γ, σ ) are independent
apriori, given G, when models are formulated by centred
parameterisations (Papaspiliopoulos et al. 2003). Therefore,
the likelihood can be broken down into the following com-
ponents:

L := L(β, μ, γ, σ )

= π(P, Ĩ,G|β,μ, γ, σ )

= π(P, Ĩ|G, β, μ, γ, σ ) × π(G|β,μ, γ, σ )

= π(P|G) × π(Ĩ|G, β) × π(G|μ, γ, σ ). (3)

The dropping of any unrelated quantities can be explained by
how the network and the epidemic are constructed in Sect. 2,
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and is demonstrated in the derivations of each component in
Appendix A, the results of which are given below:

π(P|G) =
m∏

j=2

1

⎧
⎨

⎩

j−1∑

i=1

Pi j = 1

⎫
⎬

⎭

⎛

⎝
j−1∑

i=1

Gi j

⎞

⎠

−1

×
∏

1≤i< j≤m

(1 − P j i )1
{Pi j ≤ Gi j

}
, (4)

π(Ĩ|G, β) = βm−1 exp

⎛

⎝−β
∑

1≤i< j≤m

Gi j ( Ĩ j − Ĩi )

⎞

⎠ , (5)

π(G|μ, γ, σ ) = e−(m−2)μμ|G|−1(1+μ)
∑m

i=3 1{
∑i−1

j=1 Gσi σ j =1}

×
m∏

i=3

[ ∞∑

z=i−1

μz

z!
/

μi−1

(i − 1)!

]1{∑i−1
j=1 Gσi σ j =i−1}

×
m∏

i=3

⎡

⎣w
Gσi σ1
1

i−1∏

j=2

(
w j

1 −∑ j−1
k=1 wk

)Gσi σ j

⎤

⎦ . (6)

We can proceed to inference because the likelihood (3) can be
expressed explicitly as the product of (4)–(6). However, this
complete likelihood is only useful for inference when G (and
P) is given or known,which is usually not the case in real-life
applications. As each of the

(m
2

)
potential edges is a binary

random variable, integrating G out does not seem feasible
as we will have to average over all 2(

m
2) possibilities. Also,

unlike the scalar parameters (β, μ, γ ), the support of σ is the
permutation space of {1, 2, . . . ,m}. It is not meaningful to
calculate a certain kind of point estimate of σ and quantify
its uncertainty using a frequentist approach. It is therefore
quite natural to consider Bayesian inference, in which G is
considered as latent variables, the posterior probabilities of
which are to be computed simultaneously with those of the
model parameters. It is sensible to assume the infection rate
β, which relates to the intrinsic properties of the disease, to be
independent ofμ and γ apriori, which relate to the properties
of the network. We assign the following independent and
vaguely informative priors:

β ∼ Gamma(aβ = 1, bβ = 0.001),

μ ∼ Gamma(aμ = 1, bμ = 0.001),

γ ∼ U [0, 1],
π(σ ) = (m!)−11{σ is a permutation of {1, 2, . . . ,m}}, (7)

where a/b is the mean of a random variable X ∼ Gamma(a,

b). By Bayes’ theorem, we have

π(G, β, μ, γ, σ |P, Ĩ) ∝ π(P, Ĩ,G, β, μ, γ, σ ) (8)

= π(P, Ĩ,G|β,μ, γ, σ ) × π(β,μ, γ, σ )

= π(P|G) × π(Ĩ|G, β) × π(G|μ, γ, σ )

× π(β)π(μ)π(γ )π(σ ) (9)

As the posterior density, up to a proportionality constant, can
be obtained explicitly as the product of (4)–(7), a natural
candidate for inference is MCMC. We use a component-
wise Metropolis-within-Gibbs (MWG) algorithm, described
in detail in Appendix B, in which each of the parameters
(β, μ, γ, σ ) is sampled conditional on the other three param-
eters and the whole of G, while each potential edge of G is
sampled conditional on all parameters and other potential
edges of G.

4 Simulation study

A simulation study is carried out to examine if the infer-
ence algorithm in Appendix B can recover the true values of
the parameters used to simulate from the model in Sect. 2.
Specifically, we setm = 70 and consider all combinations of
the following true values: γ = 0, 0.2, 0.5, 0.8, 1, β = 0.4,
andμ = 4, 6, 8, 10. For each of the 20 combinations, we first
simulate the PA network and then simulate the epidemic on
the network. Because of howwe construct and simulate from
the model, we have complete information on the underlying
graph G, the transmission tree P , and the infection times Ĩ.
WhenG is given together withP and Ĩ, theMCMCalgorithm
only needs to be applied to β, μ, γ and σ , and it success-
fully recovers each of the three scalar parameters. Also, the
posterior correlations between β and μ and between β and
γ are both close to zero, which makes sense because of the
independence conditional on G, according to (9). However,
we should focus on how good the algorithm is at inferring G
given P and Ĩ only, because G is usually unknown in real-
life data, while P being known is motivated by the data set
in Sect. 5. Therefore, the complete MCMC algorithm for β,
μ, γ , σ and G is applied to the same set of simulated data for
each parameter combination.

A chain of 20,000 iterations (no thinning) is obtained,with
the first 10,000 iterations discarded as burn-in. For μ and
γ , a random walk Metropolis (RWM) step with a Gaussian
proposal is used, and this step is modified into an adaptive
one during burn-in in order to tune the proposal standard
deviation, using the method outlined by, for example, Xiang
and Neal (2014, Section 3). The algorithm in general fails
to correctly identify any of the three scalar parameters. The
true value of γ is plotted against its posterior distribution at
different true values ofμ in Fig. 3. The absence of significant
linear correlation between the posterior mean of γ and its
true value, and the huge degree of uncertainty at all true
values considered suggest that it is difficult to identify γ in
particular. Similar to Fig. 3, for different true values ofμ, we
also plot the true value of μ against its posterior distribution
in Fig. 4, which suggests that, intriguingly, the latter does not
depend on the former. This is still the case if we further fix
γ to its true value.
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Fig. 3 True value of γ against
its posterior distribution
(horizontal line) and mean (dot),
at different true values of μ. The
dashed line is the line y = x
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Fig. 4 True value of μ, slightly adjusted for visibility, against its pos-
terior distribution (horizontal line) and mean (symbol), at different true
values of γ , which is estimated (circle) or fixed (triangle) to its true
value in the MCMC algorithm

The identifiability issue prompts us to consider dropping
orfixing at least oneofβ,μ andγ .Whileβ andμ are essential
to characterise the epidemic and the network, respectively,
leaving γ out means we do not allow the degree of how
preferentially attaching the network is to vary. Therefore, γ is
fixed to be 0, which is equivalent to the network model being
reduced to the original PA model, and will not be estimated.

A second simulation study is carried out, this time with
m being allowed to take different values, namely m =

30, 50, 70, combined with the following true values: β =
0.4 andμ = 4, 6, 8, 10. For each parameter combination, we
also allow different proportions of G in the simulated data to
be known in addition to P . A proportion of 0 means only P
is known, while a proportion of 1 means both P and G are
given. The true value of μ against its posterior distribution
is plotted for different combinations of m and proportions of
G in Fig. 5. The posterior of μ again shows no correlation
with its true value in the first row, which corresponds to no G
given at all, but it converges towards its true value as the pro-
portion goes to 1. Also, it is now possible to recover the true
value of μ, with even, say, a quarter of the potential edges of
G additional to P .

Rather than looking at the identifiability of one param-
eter alone, we can investigate the product α := β × μ∗,
the posterior of which can be obtained post-inference, where
μ∗ := μ + e−μ. Plotting the true value of α against its
posterior (not shown) in the similar way to Fig. 5 reveals
that it is identifiable regardless of its true value, m, or the
proportion of G given. The introduction of μ∗ is due to
that the mean of the distribution in (1) is approximately
μ+e−μ when i is large. As α is the product of the (unscaled)
epidemic rate and the average network connectedness, we
can interpret it as the network scaled epidemic rate. Epi-
demics on two different networks are comparable through
this parameter if the two networks have similar values of
μ∗.

Such findings regarding α can be explained by looking
the results of one parameter combination in detail. The joint
posterior density in Fig. 6 displays an inverse relationship
between β and μ∗ when no G is given, echoing the find-
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Fig. 5 True value of μ against
its posterior distribution
(horizontal line) and mean (dot),
at different combinations of m
and proportions of G known
additional to those implied by
P . The dashed line is the line
y = x

m = 30 m = 50 m = 70
prop. = 0
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ings by Britton and O’Neill (2002), who showed the inverse
relationship between β and the edge inclusion probabil-
ity parameter p in their BRG model and argued that “the
model parameterisation permits different explanations of the
same outcome”. This means that we cannot simultaneously
identify the parameters that characterise the epidemic rate
and the network connectedness, respectively, and being able
to identify one relative to the other is as good as we can
do.

5 Application

Before applying the proposedmodel to its data set introduced
in Sect. 1, we shall describe App Movement in detail. This
platform removes the resource constraints around mobile
application development through providing an automated
process of designing and developing mobile applications.
The process begins with the support phase whereby a com-
munity creates a campaign page in response to a community
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Fig. 6 Joint posterior density plot of β and μ∗ at selected proportions
of G given, for a simulated data set with m = 50 and true values of
the parameters (β, μ, γ ) = (0.4, 6.0, 0.0). The black dashed curve
is the line xy = 2.401, the product of the true values of β and μ∗. As
μ∗ = μ+e−μ is bounded belowby 1, the contourswhere the proportion
of G is 0 are truncated

need and engages the community in supporting the concept
through promoting and sharing the campaign on online social
networks. When the target of 150 members supporting the
campaignwithin 14days has beenmet to ensure an active user
base, the campaign proceeds to the design phase, in which
ideas regarding the design of themobile application are being
voted on. Once supporters have cast their votes, the platform
incorporates the highest rated design decisions and automat-
ically generates the mobile application. Since its launch in
February 2015, App Movement has been adopted by over
50,000 users supporting 111 campaigns, 20 of which have
been successful in reaching their target number of support-
ers,with 18generatedmobile applications currently available
in the Google Play Store and Apple App store, for iOS and
Android devices, respectively.

The design of logging the usage ofAppMovement enables
us to convert the data into a format suitable for modelling
and fitting. To illustrate this, assume that user 1 shares a
campaign page, with uniform resource locator (URL) A, on
certain social network.When user 2, who is connected to user
1 and has never viewed the campaign page, clicks on URLA,
a new URL B unique to user 2, directing to a page with the
same contents of the campaign, is created. Any subsequent
visits to the same page of users 1 and 2 will be redirected
to the same URLs A and B, respectively. Therefore, within
each campaign, there is a 1–1 relationship between the URLs
and the users. We can say that user 1 infects user 2, at the
time when URL B is created. Similarly, the users associated
with the URLs created by clicking URL B can be said to
be infected by user 2. This process is illustrated in the flow
diagram in Fig. 7. By carrying out this process of connecting
users with those who infected them until we reach, in tree
terminology, the root and all the leaves, we end up with both
the transmission tree and the infection times of the epidemic

Campaign

User 1 User 2

Other users connected to user 1 Other users connected to user 2

A
B

A

A B

Fig. 7 Flow diagram of AppMovement sharing. A straight arrow rep-
resents the generation of the labelled URL when the user visits the
campaign page, while each solid-dashed curved arrow pair represents
the click of the labelled URL and the direction of infection, respectively

of the campaign sharing. The inference outlined in Sect. 3
can then be carried out.

The model is fitted to each of ten campaign epidemics
separately, assuming they have no influence on each other
for simplicity, with m ranging from 334 to 402. Each cam-
paign corresponds to a different proposed application. The
inference algorithm is used with γ fixed to 0. For each epi-
demic, 5 chains of length 2000 (no thinning) are obtained,
after the first 1000 iterations being discarded as burn-in, dur-
ing which the proposal standard deviation forμ is tuned. The
traceplots and posterior densities of β and μ are plotted in
Fig. 8, for the model fit to the epidemic visualised in Figs. 1
and 2. The acceptance rate forμ is 0.269 and is similar for the
other 9 epidemics considered. The posterior means and stan-
dard deviations of β, μ and α for all epidemics are reported
in Table 1. Also reported is the correlation between β and
μ∗ = μ + e−μ, which is modest but consistently negative.
For any parameter θ , we denote E(θ |P, Ĩ) as its posterior
mean. We can see that E(α|P, Ĩ) is not dependent on m and
is significantly different across the epidemics. Combining
with the fact that the correlation with μ (or μ∗) is modest
(not shown), α can be seen to be successfully identified.

Model comparison or selection is difficult here because
the BRG model by Britton and O’Neill (2002) is not nested
in our proposedmodel, evenwhen γ is treated as a parameter.
Nevertheless, we fit the BRG model to the same campaign
epidemics, focusing on the parameter results to examine its
goodness-of-fit. The posteriormeans and standard deviations
of the parameters are reported in Table 2, which shows that
E(p|P, Ĩ) is of the same magnitude across all the epidemics.
For the singled out epidemic withm = 335, compared to the
average degree E(p|P, Ĩ) × (m − 1) = 2.158, which means
each user on average is connected to slightly more than two
other users, the most infectious user has infected 18 other
users. If we use E(p|P, Ĩ) as the true value of p and simulate
a BRG, the probability that one particular user is connected
to at least 18 users is 1.453 × 10−11. Combining these two
quantities with the independence of potential edges, we can
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Fig. 8 Traceplots and posterior
densities of β and μ of the PA
model for the epidemic shown
in Figs. 1 and 2
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Table 1 Posterior mean (SD)
and correlation of the scalar
parameters in the PA model
fitted to ten different campaign
epidemics

Epidemic m β μ Correlation α

1 402 0.091 (0.005) 0.323 (0.051) −0.041 0.096 (0.005)

2 391 0.218 (0.012) 0.775 (0.069) −0.137 0.269 (0.016)

3 390 0.384 (0.022) 0.606 (0.057) −0.147 0.442 (0.025)

4 388 0.242 (0.013) 0.689 (0.061) −0.136 0.289 (0.017)

5 387 0.315 (0.017) 0.718 (0.061) −0.071 0.38 (0.022)

6 371 0.491 (0.028) 0.59 (0.058) −0.087 0.563 (0.033)

7 363 0.373 (0.022) 0.603 (0.061) −0.115 0.43 (0.026)

8 358 0.453 (0.026) 0.708 (0.061) −0.068 0.545 (0.033)

9 335 0.208 (0.012) 0.592 (0.063) −0.100 0.238 (0.015)

10 334 0.147 (0.009) 0.601 (0.066) −0.169 0.169 (0.01)

see that it is very unlikely a BRG generated in this way will
be connected, let alone overlay P . On the other hand, the
network construction described in Sect. 2 ensures that the
PA network generated is always connected. Finally, contrary
to the clear inverse relationship between β and p reported in
Britton and O’Neill (2002) for both simulated and real-life
data, the joint posterior of (β, p) can bewell approximated by
a bivariate Gaussian distribution, for all epidemics reported
here. Combining with the fact that the correlations are small
(last column of Table 2), β and p can be said to be close to
independence aposteriori. This suggests that the presence of
P actually makes p (and β) identifiable, but the estimate of
the successfully identified p now shows a poor fit of the BRG
model to our data.

While the values of E(p|P, Ĩ) in Table 2 are low, those
of E(β|P, Ĩ) are similar to their PA counterparts in Table 1,
but are unusually high compared to real-life epidemics. This
is because, while real-life epidemics usually spanned days
[see, for example, Britton and O’Neill (2002) and Neal and
Roberts (2005)], the campaign epidemics spannedweeks (see

Table 2 Posterior mean (SD) and correlation of the parameters in the
BRG model fitted to ten different campaign epidemics

Epidemic m β p Correlation

1 402 0.087 (0.005) 0.0059 (0.00029) −0.085

2 391 0.232 (0.012) 0.006 (0.00031) −0.069

3 390 0.411 (0.022) 0.0055 (0.00028) −0.052

4 388 0.262 (0.014) 0.0058 (0.00029) −0.045

5 387 0.338 (0.018) 0.0057 (0.00029) −0.029

6 371 0.512 (0.028) 0.0058 (0.0003) −0.036

7 363 0.399 (0.022) 0.0059 (0.00032) −0.069

8 358 0.492 (0.027) 0.0061 (0.00032) −0.033

9 335 0.219 (0.013) 0.0065 (0.00036) −0.052

10 334 0.154 (0.009) 0.0066 (0.00037) −0.106

the time scale of Fig. 1). Out of the ten epidemics reported
here, epidemics 1 and 6 spanned the longest and shortest,
with a period of 187.371 and 36.7 days, respectively, and
this explains why their respective values of E(β|P, Ĩ) are on
opposite extremities among those reported in Table 1.
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Fig. 9 Cumulative count of infected for the campaign epidemic shown
in Fig. 1, overlaid by 95% predictive intervals of simulated cumulative
counts over time (red dashed lines)

Using the posterior of β and μ, we can simulate the net-
work epidemic and obtain the predictive distribution of the
cumulative counts over time, of which the 95% predictive
intervals (PI) overlay the observed data in Fig. 9. While the
early period of the epidemic lies within the 95% PI, it is the
slower periods of infections towards the end of the observa-
tion period that are more difficult to reproduce.

6 Discussion

We have described a network epidemic model which com-
bines the SI epidemicmodelwith the PAnetworkmodel,with
the inference carried out by MCMC as the likelihood can be
explicitly computed. The results of two simulation studies
suggest dropping one parameter in order tomake the network
scaled epidemic rate parameter identifiable. The model and
inference algorithm are successfully applied to ten different
“sharing” epidemics of a set of online community commis-
sioning data. The results suggest that the PAmodel is a better
alternative for network generation than the BRG model, for
data sets of epidemics taking place on social networks.

Several modifications can potentially make the model
more useful. First of all, information on the average con-
nectedness or the degree distribution on social networks can
be solicited beforehand, so that an informative prior can be
assigned to μ and/or γ , at least one of which can then be
identified. Given the vast amount of data about social net-
works such as Facebook and Twitter freely available on the
Internet, such information should be possible to obtain.

Another way of gaining information for the parameters,
particularly for the App Movement data, is combining the
epidemics in the modelling and inference. As users on the
social network are usually involved in more than one epi-
demic, we can pull together several epidemics which have
overlap in the users and build a larger underlying network G

comprising all the users involved, which is guaranteed to be
connected. As a user may be infected in one epidemic but
not another, each of the epidemics may then be incomplete.
While the likelihood calculations, for example (5),may differ
slightly, and each epidemic has a different rate parameter (no
matter whether it is network scaled or not), the inference pro-
cedure is basically the same, and only one set of parameters
(μ, γ ) is used to govern the network generation. Borrowing
strength from other epidemics in this way will utilise more
information available in the data, and result in parameters
being better identified or more precisely estimated.

That the epidemic is Markovian given the network is a
simplistic assumption, which has been shown inadequate for
real-life epidemics. To relax this assumption, one can use
alternative distributions for the infectious period, such as the
Gamma distribution, which is used by, for example, Xiang
and Neal (2014). This is not relevant here because the SI
model is used instead of the more popular SIR model, or
any compartment model in which being infectious is not the
final state. Instead of using one single epidemic rate β for all
the infections, meaning that the interarrival times are expo-
nentially distributed, one can use a different rate βi for the
infection of individual i , where βi is drawn from certain
probability distribution. This approach to modelling non-
Markovian processes, proposed by Masuda and Rocha (in
press), can be applied to any kind of compartment model
and can encompass a range of interarrival time distributions,
simply by choosing a different probability distribution from
which βi is drawn. When it comes to the inference, the inter-
arrival time distribution parameter(s) and each βi , given all
other epidemic rate parameters, will be updated individu-
ally, on top of the existing parameters and latent variables.
Given thatmost of the computational time lies in updating the
potential edges of G one by one, this should not add much to
the computational burden. On the other hand, including users
who have not seen or joined the campaign to correct for the
potential overestimation ofβ will add to the computation bur-
den, because the number of users not infected by a particular
campaign is vast compared to the number of infected.
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Appendix A: Likelihood derivation

This appendix derives each component of the likelihood, in
reverse order of (3).
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First, the quantity π(G|μ, γ, σ ) can be divided into two
components, which correspond to the processes described in
Sects. 2.1 and 2.2, respectively. To derive the contribution of
the independent sequence of random numbers of new edges
to π(G|μ, γ, σ ), we first establish its relationship with G.
Specifically, for 3 ≤ i ≤ m, Xi is the sum of the first i −
1 elements of the i th row (or column) of G, that is, Xi =
∑i−1

j=1 Gσiσ j . As Gσ1σ2 = 1, we have

m∑

i=3

Xi =
m∑

i=3

i−1∑

j=1

Gσiσ j =
m∑

i=2

i−1∑

j=1

Gσiσ j − 1.

This makes sense as the sum of new edges is equal to the total
number of edges minus one. Using (1), we can calculate the
likelihood of the sequence of random numbers of new edges:

L1(G; σ , μ) :=
m∏

i=3

⎧
⎨

⎩

[
e−μ(1 + μ)

]1{Xi=1}
(
e−μμXi

Xi !
)1{2≤Xi<i−1}

×
( ∞∑

z=i−1

e−μμz

z!

)1{Xi=i−1}⎫⎬

⎭

= e−(m−2)μ ×
m∏

i=3

⎧
⎨

⎩

μXi

Xi !
(
1 + μ

μ

)1{Xi=1}

×
[( ∞∑

z=i−1

μz

z!

)/
μi−1

(i − 1)!

]1{Xi=i−1}⎫⎬

⎭

=
⎡

⎣
m∏

i=3

⎛

⎝
i−1∑

j=1

Gσiσ j

⎞

⎠!
⎤

⎦

−1

× e−(m−2)μμ|G|−1
(
1 + μ

μ

)∑m
i=3 1{

∑i−1
j=1 Gσi σ j =1}

×
m∏

i=3

[( ∞∑

z=i−1

μz

z!

)/
μi−1

(i − 1)!

]1{∑i−1
j=1 Gσi σ j =i−1}

(10)

where 1{A} is the indicator function of event A, and |G| :=
∑m

i=2
∑i−1

j=1 Gσiσ j .
For the process of attaching edges to nodes, it is straight-

forward to compute the likelihood using (2). However,
because of the nature of weighted sampling without replace-
ment, we have to, for each i , calculate the probability
conditional on each of the Xi ! permutations of the selected
nodes and then average over all Xi ! probabilities to arrive
at the likelihood. As calculating the exact likelihood in this
way is not computationally feasible because the factorial
grows faster than the exponential function, we approximate
the likelihood based on one permutation of weighted sam-
pling without replacement instead. The contribution by the
new edges brought by node i is

L2i = Xi ! × w
Gσi σ1
1

i−1∏

j=2

(
w j

1 −∑ j−1
k=1 wk

)Gσi σ j

=
⎛

⎝
i−1∑

j=1

Gσiσ j

⎞

⎠! × w
Gσi σ1
1

i−1∏

j=2

(
w j

1 −∑ j−1
k=1 wk

)Gσi σ j

,

where w j is given by (2). Therefore, the likelihood of the
process of adding new edges is

L2(G; σ , γ ) :=
m∏

i=3

L2i =
m∏

i=3

⎛

⎝
i−1∑

j=1

Gσiσ j

⎞

⎠!

×
m∏

i=3

⎡

⎣w
Gσi σ1
1

i−1∏

j=2

(
w j

1 −∑ j−1
k=1 wk

)Gσi σ j

⎤

⎦.

(11)

Multiplying (10) and (11) gives the expression of π(G|μ, γ,

σ ) in (6) as
∏m

i=3

(∑i−1
j=1 Gσiσ j

)
! cancels.

Second, π(Ĩ|G, β) contains contributions from the m − 1
infections and from the connections through which no infec-
tions occurred:

π(Ĩ|G, β) =
m−1∏

i=1

m∏

j=i+1

(
β exp[−β( Ĩ j − Ĩi )]

)1{Gi j=1,Pi j=1}

×
(
exp[−β( Ĩ j − Ĩi )]

)1{Gi j=1,Pi j �=1}

= βm−1 exp

⎛

⎝−β

m−1∑

i=1

m∑

j=i+1

[
( Ĩ j − Ĩi )1{Gi j = 1}

]
⎞

⎠

= βm−1 exp

⎛

⎝−β

m−1∑

i=1

m∑

j=i+1

Gi j ( Ĩ j − Ĩi )

⎞

⎠ ,

which is the same as (5), and confirms that the infection
times are independent of the transmission tree, as the infec-
tion mechanism is a Poisson process (Britton and O’Neill
2002), hence the dropping of P in the function argument.

Third, the contribution to likelihood by P is straightfor-
ward, as π(P|G) “is the uniform distribution on the set of all
possible infection pathways” (Britton and O’Neill 2002).We
have to ensure nobody infects the initial infected (individual
1), and for each individual j of the remainingm−1 individu-
als, there is one and only one neighbour who is infected prior
to individual j , ends up infecting individual j . Therefore,
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π(P|G) =1{nobody infects individual 1}

×
m∏

j=2

1{only one previously infected neighbour infects individual j}
number of neighbours infected before individual j

=
m∏

i=2

1{Pi1 = 0} ×
m∏

j=2

1
{∑ j−1

i=1 Pi j = 1
}∏m

i= j 1
{Pi j = 0

}∏m
i=1 1

{Pi j ≤ Gi j
}

∑ j−1
i=1 Gi j

=
m−1∏

j=1

m∏

i= j+1

(1 − Pi j ) ×
m∏

j=2

1
{∑ j−1

i=1 Pi j = 1
}

∑ j−1
i=1 Gi j

×
m∏

j=2

j−1∏

i=1

1
{Pi j ≤ Gi j

}
,

which is the same as (4).

Appendix B: MCMC algorithm

This appendix describes the MCMC algorithm for the infer-
ence outlined in Sect. 3.
Sampling β As we have assigned a (conditional) conjugate
prior to β, its full conditional posterior is given by

β| · · · ∼ Gamma

⎛

⎝aβ +m−1, bβ +
∑

1≤i< j≤m

Gi j ( Ĩ j − Ĩi )

⎞

⎠ ,

where · · · means all arguments in (8) other than the quan-
tity of interest. So, conditional upon the data and all other
parameters, β can be sampled via a Gibbs step.
Sampling μ As μ is only involved in one single term in the
likelihood, namely L1(G; σ , μ), in the absence of a conju-
gate prior, we can update μ using a simple Metropolis step.
Specifically, we propose μ∗ from a symmetrical proposal
q(·|μ) and accept μ∗ with probability given by

αμ =1∧ L1(G; σ , μ∗)×(μ∗)aμ−1 exp(−bμμ∗)1{μ∗ > 0}
L1(G; σ , μ)×(μ)aμ−1 exp(−bμμ)1{μ > 0} .

Sampling γ TheMetropolis step for γ is similar to that forμ,
as the former is involved in L2(G; σ , γ ) in the likelihood.We
propose γ ∗ from a symmetrical proposal q(·|γ ) and accept
γ ∗ with probability

αγ = 1 ∧ L2(G; σ , γ ∗) × 1{0 ≤ γ ∗ ≤ 1}
L2(G; σ , γ ) × 1{0 ≤ γ ≤ 1} .

Sampling σ To update the ordering as a whole, we propose
σ ∗, which is accepted with probability

ασ = 1 ∧ π(G|μ, γ, σ ∗)
π(G|μ, γ, σ )

.

This requires a symmetrical proposal on the permutation
space. Specifically, we use a “random walk by insertion”
method used by Bezáková et al. (2006). Two indices i and j
are first sampled with replacement from {1, 2, . . . ,m} uni-
formly. Without loss of generality, assume that i < j . While
the current ordering is

σ = (σ1, . . . , σi−1, σi , σi+1, . . . , σ j−1, σ j , σ j+1, . . . , σm),

the proposed ordering is

σ ∗ =(σ1, . . . , σi−1, σi+1, . . . , σ j−1, σ j , σi , σ j+1, . . . , σm).

The intuition is that the i th card of a deck of cards is taken
out and inserted in the j th position. As (i, j) and ( j, i) have
the same probability of being sampled in their particular
orders, the proposal is symmetrical. This method is, accord-
ing to Bezáková et al. (2006), more efficient than the random
swap method, in which an arbitrary pair of adjacent indices
(σi , σi+1) (1 ≤ i < m) is picked, and a swap between them
produces the proposed ordering.

Theoretical properties are not clear yet to provide guide-
lines on optimising the number of random insertions in each
MCMC iteration. As it is found out that the majority of the
computation time per iteration is taken by updating all poten-
tial edges of G individually, which will be described below,
we simply propose to update the ordering m times in each
iteration, so that each index will on average be picked and
inserted once. It should, however, be noted that an index
potentially changes its position even if it is not selected, as
long as its position lies between i and j inclusive.

Sampling G We will use a Gibbs step to update each of the(m
2

)
potential edges in G sequentially, and this requires defin-

ing the quantities required first. Unlike a BRG in O’Neill
(2002), Neal and Roberts (2005), Ray and Marzouk (2008)
and Groendyke et al. (2011), the potential edges of G are
not independent anymore, both apriori and aposteriori. Still,
we can update each potential edge Gi j (1 ≤ i < j ≤ m),
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conditional on all ofG exceptGi j (andG j i because of symme-
try), denoted by G−i j . While G−i j is not a proper adjacency
matrix, we also define matrices G0−i j := {G−i j ,Gi j = 0} and
G1−i j := {G−i j ,Gi j = 1}, so that exactly one of G0−i j and

G1−i j is identical to G.
Because of the difference in the network ordering and

epidemic ordering, for each pair (i, j), we proceed to sample
Gσiσ j instead of Gi j . This will not pose a problem in practice
aswewill go through all combinations of (i, j) satisfying 1 ≤
i < j ≤ m. Because of the 1-1 relationship between (i, j)
and (σi , σ j ) given σ , eventually all the potential edges will
be updated. For notational convenience, we also define s =
min(σi , σ j ) and t = max(σi , σ j ), which implies Ĩt > Ĩs . If
Pst = 1, as mentioned in Sect. 2.3 and implied by (4), the
four equivalent quantities, namely Gσiσ j ,Gσ jσi ,Gst and Gts ,
are equal to 1 with posterior probability 1, regardless of all
other parameters and G−st . Therefore, we shall only consider
π(Gst |Pst = 0,G−st , · · · ) in detail. Before doing so, we
observe that β can be integrated out in the joint posterior in
(8), which is achieved by substituting (5) and the prior of β

in (7) into (9), followed by integration with respect to β:

π(G, β, μ, γ, σ |P, Ĩ) ∝ π(P|G)

× βm−1 exp

⎛

⎝−β
∑

1≤i< j≤m

Gi j ( Ĩ j − Ĩi )

⎞

⎠

× π(G|μ, γ, σ ) × βaβ−1 exp(−βbβ) × π(μ)π(γ )π(σ )
∫

π(G, β, μ, γ, σ |P, Ĩ)dβ ∝ π(P|G) × π(G|μ, γ, σ )

× π(μ)π(γ )π(σ )

×
∫

β(aβ+m−1)−1 exp

⎡

⎣−β

⎛

⎝bβ +
∑

1≤i< j≤m

Gi j ( Ĩ j − Ĩi )

⎞

⎠

⎤

⎦ dβ

π(G, μ, γ, σ |P, Ĩ)dβ ∝ π(P|G) × π(G|μ, γ, σ )

× π(μ)π(γ )π(σ )

×
⎛

⎝bβ +
∑

1≤i< j≤m

Gi j ( Ĩ j − Ĩi )

⎞

⎠

−(aβ+m−1)

. (12)

The last line is the reciprocal of the constant of proportional-
ity as the integrand in the second line is the density function of

a Gamma
(
aβ + m − 1, bβ +∑

1≤i< j≤m Gi j ( Ĩ j − Ĩi )
)
dis-

tribution without the constant. With β integrated out π(Gst |
Pst = 0,G−st , · · · ) can now be derived. Using (4), (10) and
(11), we have

Pr(Gst = 0|Pst = 0,G−st , · · · )

∝ π(G0−st |μ, γ, σ )

t−1∑

k=1,k �=s

Gkt

⎛

⎜
⎜
⎝bβ +

∑

1≤i< j≤m
i �=s, j �=t

Gi j ( Ĩ j − Ĩi )

⎞

⎟
⎟
⎠

−(aβ+m−1)

,

Pr(Gst = 1|Pst = 0,G−st , · · · )

∝ π(G1−st |μ, γ, σ )

t−1∑

k=1,k �=s

Gkt + 1

⎛

⎜
⎜
⎝bβ +

∑

1≤i< j≤m
i �=s, j �=t

Gi j ( Ĩ j − Ĩi ) + ( Ĩt − Ĩs)

⎞

⎟
⎟
⎠

−(aβ+m−1)

.

The posterior distribution π(Gst |Pst = 0,G−st , · · · ) can
then be obtained directly. The interpretation of the right-hand
expression in the two lines is as follows. The numerator and
the denominator correspond to the network likelihood and
the transmission tree likelihood, respectively, under the cor-
responding scenario of whether nodes σi and σ j are network
neighbours, which also affects the summation in (12), hence
the difference between the two lines in the bracketed term. It
can be seen that the computational burden lies in computing
the network likelihood. Assume that we are going to update
Gst , whose current value is x ∈ {0, 1}, and that we have
retained the likelihoodunderG = Gx−st after updating thepre-
vious potential edge. We now have to calculate the network
likelihood under the alternative scenario G = G1−x−st . The
summations involved in (10) and (11) make it not possible
to factorise the network likelihood, which therefore requires
the whole of G1−x−st to compute.

Sampling P Although the inference algorithm above is for
the transmission tree being part of the data, it can be extended
to include sampling of P if it is unknown, in a way similar
to how G is being treated as latent variables and inferred. As
mentioned in Sect. 3, P follows a uniform distribution on
all possible infection pathways given G, thus independent of
how G is generated in the first place. As the same Gibbs step
for sampling P described by Britton and O’Neill (2002) can
therefore be used, it will not be repeated here.
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